Effect of Driver Width Variations on Propagation Delay of Driver-Interconnect-Load System
نویسندگان
چکیده
The performance of VLSI/ULSI chip is becoming less predictable as device dimensions shrinks below the sub-100-nm scale. Process variation is considered to be a major concern in the design of circuits including interconnect pipelines in current deep submicron regime. Process variation results in uncertainties of circuit performances such as propagation delay. The reduced predictability can be attributed to poor control of the physical features of devices and interconnects during the manufacturing process. Variations in these quantities maps to variations in the electrical behavior of circuits. The channel width of MOSFET varies due to changes in drain/source thickness; substrate, polysilicon and implant impurity level; and surface charge. This paper provides a comprehensive analysis of the effect of channel width variation on the propagation delay through driverinterconnect-load (DIL) system. The impact of process induced driver width variations on propagation delay of the circuit is discussed for three different technologies i.e. 130nm, 70nm and 45nm. The comparison of results between these three technologies shows that as device size shrinks, the process variation issues becomes dominant during design cycle and subsequently increases the uncertainty of the delays. General Terms Interconnects, delay, signal, VLSI.
منابع مشابه
Analysis of Propagation Delay Deviation under Process Induced Threshold Voltage Variation
Process variation has become a major concern in the design of many nanometer circuits, including interconnect pipelines. The primary sources of manufacturing variation include Deposition, Chemical Mechanical Planarization (CMP), Etching, Resolution Enhancement Technology (RET). Process variations manifest themselves as the uncertainties of circuit performance, such as delay, noise and power con...
متن کاملMonte Carlo Analysis of Propagation Delay Deviation due to Process Induced Line Parasitic Variations in Global VLSI Interconnects
Process variation has recently emerged as a major concern in the design of circuits including interconnect in current nanometer regime. Process variation leads to uncertainties of circuit performances such as propagation delay. The performance of VLSI/ULSI chip is becoming less predictable as MOSFET channel dimensions shrinks to nanometer scale. The reduced predictability can be ascribed to poo...
متن کاملUsing the Reaction Delay as the Driver Effects in the Development of Car-Following Models
Car-following models, as the most popular microscopic traffic flow modeling, is increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. A number of factors including individual differences of age, gender, and risk-taking behavior, have been found to influence car-following behavior. This paper presents a novel idea to calculate ...
متن کاملPeak Crosstalk Noise Estimation in CMOS VLSI Circuits
|Interconnect between a CMOS driver and receiver can be modeled as a lossy transmission line in high speed CMOS VLSI circuits as transition times become comparable to or less than the time of ight delay of the signal through the interconnect. In this discussion, a linear resistor model is used to approximate the CMOS driver stage, and the CMOS receiver is modeled as a capacitor. A closed form e...
متن کاملDesign and Analysis of New Level Shifter With Gate Driver for Li-Ion Battery Charger in 180nm CMOS Technology
In this work, the design and analysis of new Level Shifter with Gate Driver for Li-Ion battery charger is proposed for high speed and low area in 180nm CMOS technology. The new proposed level shifter is used to raise the voltage level and significantly reduces transfer delay 1.3ns (transfer delay of conventional level shifter) to 0.15ns with the same input signal. Also, the level shifter with g...
متن کامل